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NOMENCLATURE 

specific heat of solidified material; 
thermal conductivity of solidified material ; 
= Lc(T, - T,), latent heat of solidification ; 
temperature: T = (T’- T,)/{T,,- T,); 
temperature of solidification ; 
temperature of cooling boundary ; 
parabolic cylinder coordinates in normalized 
problem : 

x = 2uv, y = u2 - 02; 

uniform speed of advance of the material in the 
positive y’ direction ; 
coordinates in physical plane: x’ = xKV Qc, 

y’ = J&v QC; 

= F(x‘), equation of solidification interface: 

3’ =i{x) = VQC/K F(x’). 

Greek symbol 
Q. density of solidified material. 

INTRODUC?ION 

KNOWN exact solutions of Stefan problems are limited in 
number. Those found up to 1959 are discussed by Cl). 
Amongst the fields of application of Stefan problems today 
continuouscasting of metal is prominent and much work has 
been done, both numerically and analytically. 

A recent paper by [2] gives an “exact” 2dim. solution for 
the slab-casting problem but the author argues that in many 
instances heat flow by conduction dominates heat flow by 
transport of material. Hence he uses Laplace’s equation to 
describe the steady heat flow. 

The present treatment is also 2-dim. and since primary 
interest was in the shape of the solidification interface near the 
wall of the mold, the liquid and solid material is assumed to 
occupy the complete right half-plane (and thus, in effect, one 
wall of the mold is removed to infinity). On the other hand, the 
full steady heat flow equation is used, i.e. the term describing 
heat transport is retained, and thus we might expect that the 
results are more generally applicable. 

As in Siegel’s case the present analysis is for a so-called 
“single phase” problem in which the temperature of the 
incoming liquid material is assumed uniform and equal to the 

freezing temperature of the material. Density and specific heat 
of liquid and solid are assumed equal. 

The connection between the solution derived for the 
present problem and that for the. growth of a parabolic 
dendritic platelet by [3] is also discussed briefly below. 

FO~U~~ON OF THE PROBLEM 

Description of the 2-&t. model 
The model is ilhrstrated in Fig. 1. The material is assumed 

to advance uniformly in the positive y-direction at constant 
speed. The temperature distribution in the solid and, in 
particular, the location of the interface is to be determined. 

Boundary conditions 
An appropriate condition to describe heat flow at the 

cooling surface x = 0, $ > 0 must be chosen. In order to 
obtain an exact solution, it is necessary to make this choice 
the simplest, i.e. constant temperature T, < To where T,, is 
the freezing temperature of the material. (This is also the 
boundary condition used by [2]). 

Such a condition is obviously well removed from the 
situation prevailing in practical casting but it is hoped that the 
solution obtained here will be a suitable starting point for 
approximate analysis of problems with more realistic cooling 
conditions. The latter might be the so-cahed “radiation” 
condition TX. = 1(T’ - T,) where 1 = H/K, H being the 
coefficient of “surface heat transfer” and K the thermal 
conductivity of the material. We note that this condition 
reduces to the one used here as 1 -t m. 

On the liquid-solid interface, the temperature of liquid and 
solid are equal. On the interface, we must apply also the 
Stefan condition for absorption of latent heat on freezing in 
the appropriate form for a steady state 2dim. problem with 
material transport at constant speed. The temperature is 
assumed bounded everywhere. 

TX.,. + T;sY. = +, x‘ > 0: y’ > F(Y) 

x’ = 0, T’ = T,, y’ > 0 

T; = 0 F(0) < y’ cc 0 

y’ = F(x’) T’ = T, 
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T;.= - 
L’pV 

K[l + (g!‘]. 
Making the normalizing substitutions 

T’ - T, 
TV._.__-- 

To - Tt 

VPC VPC 
x = -x’, y = -yl 

I( K 

L= L 
0, - T,) 

f(x) = y F(x’) 

we obtain 

T,,+T,,=T,,, x>O:y>j(x) (1) 

x=0, T=O y>0 (2) 

T, = 0 f(0) < y c 0 (31 

y=f(x), T= I (4) 

L 
T,= -- 

1 +f’2 

THE SOLUTION 

The equation and boundary conditions (it@) permit an 
exact solution in parabolic cylinder co-ordinates. 

Put x = Zuo, y = u2 - v*, then the problem becomes 

T “” - 2uT, + T,, + 2vT, = 0, I( > o: o < v < 4(u) (6) 

u = 0, T = 0, u>o (7) 

u = 0, T, = 0, 0 c 0 < (b(0) (8) 

n = #+A T=l (9) 

T = 2LE& + a#] 
” 

1+(6’2 . 

If Tis independent of u and Cp(u) = constant = uO, say, the set 
(6)-(10) reduces to 

LIQUID METAL 

FIG. 1. The 2-dim. model. 

T,,, + 207’” = 0, 0 < v < v0 (11) 

v---O, T=O 02) 

l! = Do, T=l (I31 

T, = ZLu,. (14) 

The equations and boundary conditions (ll)-(14) are 
mathematically equivalent to those of Neumann’s classical l- 
dim. time-dependent freezing-melting problem [l], if v is 
replaced by xJ2t “*. Hence we obtain 

erfu 
T=-- 

erfv, 
(if) 

with v, determined by 

LII”2 a0 evf erf v0 = 1. (16) 

In rectangular coordinates, the liquid-solid interface u = Q, 
becomes 

x2 _ 
Y = G - ‘6. 

After this work was completed, we noted that the transfor- 
mation to parabolic cylinder coordinates had been used by 
[3] in the solution of one of a number of Stefan problems in 
crystal growth. In their case, its use was rather more obvious, 
since the relevant problem was the growth of a parabolic 
dendritic platelet advancing into an unbounded liquid 
medium. 

Horvay and Cahn began with the parabolic shape of the 
freezing front, and deduced the temperature distribution in 
front of, and behind, the parabola. 

Our problem, as has been seen, was converse in its 
reasoning, and complicated by the fact that we were working 
in a half-plane with boundary conditions to be satisfied on the 
y-axis. Beginning with a uniform temperature distribution 
behind a freezing front of unknown shape, we have deduced 
the parabolic equation of the front, and the temperature 
distribution in front of it. 

It is not surprising, in view of the converse approach of [3], 
that the relationship of their final mathematical results for the 
parabolic platelet to those of the Neumann problem, nec- 
essarily more distant than ours, is not indicated. 

COMMENTS 

It is hoped that the solution obtained, apart from any 
intrinsic merit it may have, wilI provide a basic for anaIytica1 
approximate solution of models with more sophisticated 
boundary conditions and/or geometry. Further, if the re- 
duction of the present 2dim. steady state problem to the 
mathematicai~y equivaIent similarity solution of Neumann is 
not merely coincidence there is a possibility of further 2-dim. 
solutions of interest being derived from known similarity 
solutions of Stefan problems. 

FAR WALL 
OF MOLD 
REMOVED TO 
iNFlNiTY 
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