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NOMENCLATURE
¢ specific heat of solidified material;
K, thermal conductivity of solidified material ;
L, = Le(Ty— T,), latent heat of solidification ;

T, temperature: T = {T"~T,)(T,—T,);

Tos temperature of solidification;

Ty temperature of cooling boundary;

u.v, parabolic cylinder coordinates in normalized
problem:
x =2uv, y = u? — p?;

v, uniform speed of advance of the material in the
positive y' direction ;

X', ¥, coordinates in physical plane: x’ = xKV pe,
¥ = yKV pc;

¥y = F(x'), equation of sclidification interface:

y = f{x} = Vpe/K F(x).

Greek symbol
2, density of solidified material.

INTRODUCTION

KNown exact solutions of Stefan problems are limited in
number. Those found up to 1959 are discussed by {1].
Amongst the fields of application of Stefan problems today
continuous casting of metal is prominent and much work has
been done, both numerically and analytically.

A recent paper by [2] gives an “exact™ 2-dim. solution for
the slab-casting problem but the author argues that in many
instances heat flow by conduction dominates heat flow by
transport of material. Hence he uses Laplace’s equation to
describe the steady heat flow.

The present treatment is also 2-dim. and since primary
interest was in the shape of the solidification interface near the
wall of the mold, the liquid and solid material is assumed to
occupy the complete right half-plane (and thus, in effect, one
wall of the mold is removed to infinity). On the other hand, the
full steady heat flow equation is used, i.e. the term describing
heat transport is retained, and thus we might expect that the
results are more generally applicable.

As in Siegel’s case the present analysis is for a so-called
“single phase” problem in which the temperature of the
incoming liquid material is assumed uniform and equal to the

HMT 25:7 - K

freezing temperature of the material. Density and specific heat
of liquid and solid are assumed equal.

The connection between the solution derived for the
present problem and that for the. growth of a parabolic
dendritic platelet by {3] is also discussed briefly below.

FORMULATION OF THE PROBLEM

Description of the 2-dim. model

The model is illustrated in Fig. 1. The material is assumed
to advance uniformly in the positive y-direction at constant
speed. The temperature distribution in the solid and, in
particular, the location of the interface is to be determined.

Boundary conditions

An appropriate condition to describe heat flow at the
cooling surface x" = 0, y' > 0 must be chosen. In order to
obtain an exact solution, it is necessary to make this choice
the simplest, i.e. constant temperature T, < T, where T, is
the freezing temperature of the material. (This is also the
boundary condition used by [2]).

Such a condition is obviously well removed from the
situation prevailing in practical casting but it is hoped that the
solution obtained here will be a suitable starting point for
approximate analysis of problems with more realistic cooling
conditions. The latter might be the so-called “radiation”
condition T,. = A(T" — T,) where 1 = H/K, H being the
coefficient of “surface heat transfer” and K the thermal
conductivity of the material. We note that this condition
reduces to the one used here as 4 — oc.

On the liquid-solid interface, the temperature of liquid and
solid are equal. On the interface, we must apply also the
Stefan condition for absorption of latent heat on freezing in
the appropriate form for a steady state 2-dim. problem with
material transport at constant speed. The temperature is
assumed bounded everywhere.

The mathematical statement
Voc
Tow + Ty = —ET;,, x'>0:y > F(x')
X=0 T=T,y>0

T. =0 FO)<y «0
Yy=Fx) T'=T,

1059



1060

LpV

Making the normalizing substitutions

T-T,
T = —

To"'Tl
Vpe , Vpe

= X, E

kK YTx?
L L

T — Ty)

14
Jw) =~ Fx)

we obtain
T+ Ty=T, x>0:y>f(x) )
x=0,T=0 y>0 2)
T.=0 fO)<y<0 3
y=fx), T=1 @
L
o 5
T, e &)
THE SOLUTION

The equation and boundary conditions (1)-(5) permit an
exact solution in parabolic cylinder co-ordinates.
Put x = 2uv, y = u® — v, then the problem becomes

Tou~2T, + Ty + 20T, =0, u>0:0<v <) (6

v=0, T =0, u>0 ()
=0, T, =0, 0 < v < $(0) ®)
v = dlu), T =1 (9}
T, = 2L[¢ + ué’]‘ (10)

I+ ¢

If T isindependent of u and ¢(u) = constant = v, say, the set
(6)—(10) reduces to

Y —— et ~—T
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FiG. 1. The 2-dim. model.
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T+ 20T, =0, 0<v<u, (1)
v=0, T=0 (12)
v=1, T=1 (13)

T, = 2Lvg. (14)

The equations and boundary conditions (11)-(14) are
mathematically equivalent to those of Neumann’s classical 1-
dim. time-dependent freezing—melting problem [1], if v is
replaced by x/2t'. Hence we obtain

f
i (15)
erfo,
with v, determined by
LIT'? g e erfng = 1. {16)

In rectangular coordinates, the liquid-solid interface v = v,
becomes
x? )
y= 4 b

After this work was completed, we noted that the transfor-
mation to parabolic cylinder coordinates had been used by
[3] in the solution of one of a number of Stefan problems in
crystal growth. In their case, its use was rather more obvious,
since the relevant problem was the growth of a parabolic
dendritic platelet advancing into an unbounded liquid
medium.

Horvay and Cahn began with the parabolic shape of the
freezing front, and deduced the temperature distribution in
front of, and behind, the parabola.

QOur problem, as has been seen, was converse in its
reasoning, and complicated by the fact that we were working
in a half-plane with boundary conditions to be satisfied on the
y-axis. Beginning with a uniform temperature distribution
behind a freezing front of unknown shape, we have deduced
the parabolic equation of the front, and the temperature
distribution in front of it.

It is not surprising, in view of the converse approach of [ 3],
that the relationship of their final mathematical results for the
parabolic platelet to those of the Neumann problem, nec-
essarily more distant than ours, is not indicated.

COMMENTS

It is hoped that the solution obtained, apart from any
intrinsic merit it may have, will provide a basic for analytical
approximate solution of models with more sophisticated
boundary conditions and/or geometry. Further, if the re-
duction of the present 2-dim. steady state problem to the
mathematically equivalent similarity solution of Neumann is
not merely coincidence there is a possibility of further 2-dim.
solutions of interest being derived from known similarity
solutions of Stefan problems.
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